A Survey on Pure and Mixed Exponential Sums modulo Prime Powers

نویسندگان

  • TODD COCHRANE
  • ZHIYONG ZHENG
چکیده

where p is a prime power, epm(·) is the additive character epm(x) = e m and χ is a multiplicative character (mod p). The goals of this paper are threefold; first, to point out the similarity between exponential sums over finite fields and exponential sums over residue class rings (mod p) with m ≥ 2; second, to show how mixed exponential sums can be reduced to pure exponential sums when m ≥ 2 and third, to make a thorough review of the formulae and upper bounds that are available for such sums. Included are some new observations and consequences of the methods we have developed as well as a number of open questions, some very deep and some readily accessible, inviting the reader to a further investigation of these sums.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Consecutive Powers of a Primitive Root: Gaps and Exponential Sums

For a primitive root g modulo a prime p ≥ 1 we obtain upper bounds on the gaps between the residues modulo p of the N consecutive powers agn , n = 1, . . . , N , which is uniform over all integers a with gcd(a, p)= 1. §

متن کامل

Twisted Monomial Gauss Sums modulo Prime Powers

We show that twisted monomial Gauss sums modulo prime powers can be evaluated explicitly once the power is sufficiently large.

متن کامل

On a Congruence Modulo n Involving Two Consecutive Sums of Powers

For various positive integers k, the sums of kth powers of the first n positive integers, Sk(n) := 1 k+2k+ · · ·+nk, are some of the most popular sums in all of mathematics. In this note we prove a congruence modulo n3 involving two consecutive sums S2k(n) and S2k+1(n). This congruence allows us to establish an equivalent formulation of Giuga’s conjecture. Moreover, if k is even and n ≥ 5 is a ...

متن کامل

Explicit values of multi-dimensional Kloosterman sums for prime powers, II

For any integer m > 1 fix ζm = exp(2πi/m), and let Z ∗ m denote the group of reduced residues modulo m. Let q = pα, a power of a prime p. The hyper-Kloosterman sums of dimension n > 0 are defined for q by R(d, q) = ∑ x1,...,xn∈Z∗ q ζ x1+···+xn+d(x1···xn) q (d ∈ Zq), where x−1 denotes the multiplicative inverse of x modulo q. Salie evaluated R(d, q) in the classical setting n = 1 for even q, and...

متن کامل

On the Distribution of Exponential Sums

We discuss three problems of the following kind: given a set A ⊆ Fp of n := |A| residues modulo a prime p, how are the absolute values |SA(z)| of the corresponding exponential sums SA(z) := ∑ a∈A e 2πi p ; z ∈ Fp distributed in the interval [0, n]?

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009